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Contact detection is a general problem of many physical simulations. This work presents a O(N) multigrid
method for general contact detection problems (MGCD). The multigrid idea is integrated with contact detec-
tion problems. Both the time complexity and memory consumption of the MGCD are O(N). Unlike other
methods, whose efficiencies are influenced strongly by the object size distribution, the performance of MGCD
is insensitive to the object size distribution. We compare the MGCD with the no binary search (NBS) method
and the multilevel boxing method in three dimensions for both time complexity and memory consumption. For
objects with similar size, the MGCD is as good as the NBS method, both of which outperform the multilevel
boxing method regarding memory consumption. For objects with diverse size, the MGCD outperform both the
NBS method and the multilevel boxing method. We use the MGCD to solve the contact detection problem for
a granular simulation system based on the discrete element method. From this granular simulation, we get the
density property of monosize packing and binary packing with size ratio equal to 10. The packing density for
monosize particles is 0.636. For binary packing with size ratio equal to 10, when the number of small particles

is 300 times as the number of big particles, the maximal packing density 0.824 is achieved.
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I. INTRODUCTION

The contact detection methods aim at detecting potential
physical contacts among all the objects in the system. Con-
tact detection methods have numerous applications in vari-
ous areas such as physically based simulations, granular ma-
terials, computer graphics, molecular dynamics (MD), and
the discrete element method (DEM) [1]. Contact detection is
usually the most computing-intensive process in the simula-
tion of multiple discrete objects [2]. Categorized by how the
object’s spatial coordinates are related to its storage place in
the memory (RAM), there are mainly two types of contact
detection methods, namely, spatial sorting methods [3,4] and
spatial hashing methods [5,6]. Spatial sorting methods make
use of a hierarchical tree decomposition of the domain, or
sort objects based on their spatial coordinates. In spatial
hashing methods, the domain is usually partitioned into a set
of orthogonal cells, and the objects are mapped to those cells
based on spatial coordinates. After the relationship between
the object’s spatial location and its storage place being estab-
lished, we can detect exact contacts by checking every object
and their corresponding neighbors. If all pairwise objects are
checked directly, the time complexity is O(N?). Spatial sort-
ing methods have a time complexity of O(N InN). Spatial
hashing methods, on the other hand, have a time complexity
of O(N), but they are much more sensitive to the object size
variances (e.g., the size ratio) [3,6].

For real-life physical problems, sizes of objects in the
system are often widely diverse. Some researchers extended
the basic spatial hashing method to solve the contact detec-
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tion problem for diverse object sizes. The natural approach is
to discretize every large object into several small objects, and
detect contacts for these small objects. The multilevel boxing
method proposed by Iwai et al. [7] organizes objects into
multiple level of boxes, and for each object and its smaller
potential neighbors, the contact is checked in the correspond-
ing level according to the size of the potential neighbors.
When the object sizes conform to bimodal distribution, let
W, be the size of big objects, W, be the size of small objects,
and D be the number of dimensions of the system. In their
method, the contacts between big objects and small objects
are detected in the fine level. Since each big object needs to

be checked against ( )D small cells in the fine level, the

time complexity is O[Nb (W”) ] If the object sizes con-
form to a uniform dlStrlbuthH O[Nb ( ) ] becomes

O[N X( ) ] (see the Appendix). CGRID [5] solves this
problem by making large ob_]ects alive until all of their
neighboring cells expire. A review of various approaches to
contact detection is given by Munjiza [8]. These algorithms
face two contradictory sides. If discretizing the information
of big objects to the fine grid, the time complexity for this
discretization itself is O[Nb ( ) ] Or, other objects can-
not get the spatial information of those neighboring big ob-
jects.

This paper presents a general multigrid contact detection
method (MGCD). By integrating the idea of multigrid and
solving different ranges of contacts at grids with different
coarsenesses, the MGCD has O(N) time complexity and is
insensitive to object size ratio W This paper is organized as
follows. Following the introduction in Sec. I, Sec. II presents
the multigrid method for contact detection. Section III dis-
cusses the performance of MGCD and compares it with the
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FIG. 1. Schematic view of a
system with two grids in 2D. Ob-

jects are circles. (a) According to
the objects’ size, they belong to
different grid layers. (b) Objects

in the system. (c) Layer 1: S% .
is shaded; Sige=Spaive 1S iN
white. (d) Layer 2: S is sha-

ded.

ative

native

(b) (d)

no binary search (NBS) method [6] and the multilevel box-
ing method [7]. In Sec. IV, the MGCD is applied to the
simulation of binary packing of granular materials with the
size ratio equal to 10. Finally, some conclusions and discus-
sions are made in Sec. V.

II. THE METHOD

In the MGCD, each object is completely contained in an
axis-aligned bounding box (AABB), which is aligned with
the axes of the coordinate system. AABB is used to improve
the efficiency of contact detection, and when the shapes of
objects meet some reasonable assumptions, we can expect
that the number of intersections between AABBs remains
proportional to the number of actual object intersections [9].

In standard spatial hashing methods, the contact detection
process is composed of two phases. In the first phase, the
domain is divided into monosize cells using rectangular grid.
Each object is set to belong to a particular cell according to
its coordinates, and objects in the same cell are organized as
a linked list. In the second phase, for each cell, the method
detects the contacts between the objects in current cell and
all other objects in neighboring cells. For objects with the
same size W, the cell size C is often chosen as C=W+A,
where A=0 is a small number. This strategy ensures all

neighboring objects belong to neighboring cells. Since the
search region for each particle is narrowed to neighboring
cells, the time complexity is reduced to O(N). However, if
the system contains objects with diverse sizes, to ensure the
neighboring objects belong to neighboring cells, the cell size
needs to be C=W,+A and each cell on average contains N
X (C/L)P objects, where L is the size of the domain. The

NyX WP

density of big objects is p,=—5

, and the density of small

long Tange .
contact \

,,,,,,, D_—.D fine grid, layer m
short range .

contact” ~~.___ _ ——

FIG. 2. The contacts among small objects are detected in the

fine grid. The contacts among big objects are detected in the coarse

grid. The contacts between big objects and small objects are also
detected in the coarse grid.
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objects is p,= to be checked
against O[N X (C/L)P] objects, the time complexity is

O[N X (N X (C/L)P)]
= O{N X [N, X (Wy/L)” + N, X (W,/L)"]}

WD
=0[N>< (pb+psw—;))):|. (1)

The increase of time complexity is caused by the increase
of search ranges. For detecting contacts between small ob-
jects, a search range which is slightly bigger than W is
enough. However, for standard spatial hashing methods, a
search range bigger than W, is required.

To solve this problem, MGCD integrates the idea of mul-
tigrid and detect contacts with different ranges on grids with
different coarsenesses (Fig. 2). Figure 1 illustrates a sche-
matic view of a system with two grids.

Let the object set in the problem domain () be denoted by
0={0;:i=1,2,...,N} and set {s;:i=1,2,...,N} be the
length of the longest dimension of the AABB of O,. Let a
sequence {G":m=1,2,...,M} of increasingly finer grids be
given and C"(C™~'>(C™) be the corresponding cell size of
G™. In each grid G, there are [ﬁJD cells. Object O; belongs
to a particular cell if and only if the center of the AABB of
O; lies within this cell. For each grid G”, there are two object

sets: native object set S, and target object set Sy,e. Which
are defined by
nauve {0 Cm+1 = s < Cm} (2)
ld.rget {0 S < Cm} (3)
The following rules are satisfied:
U S;ndtl\/e 0 4 (4)
S:’allVC ﬂ Sﬁatlve = @ m # n’ (5)
m m—1
Slargel C Starget’ (6)
S::rget U S:’atllve = S?;rglel (7)

The pseudocode of multigrid contact detection method is de-
fined as follows.

1. for each grid G™

2. let {Un ..} be the result of BUILD-CELLS (Sh,

3. let {Upeet be the result of BUILD-CELLS (S

4. for each U, e {Upot

5. let {neighbor(U, ; )} be the set of cells neighboring
to cell U,

6. for each U 1y € {Umgel}ﬂ{neighbor(U,-’jyk)}

nallve)

larget)

7. for each 0 eUjx
8. foreachO €Uy iy
9. DETECT (01,0 )

BUILD-CELLS (S™) partitions elements of set $” into a set
of no-empty cells {U"}. DETECT (O;,0;) does the actual con-
tact detection between object O; and object O;. The algo-
rithm presented here focuses more on the multigrid aspect of

PHYSICAL REVIEW E 75, 036710 (2007)

the MGCD, and the implementation chosen is the classic
spatial hashing. MGCD uses NBS, a clever, optimized imple-
mentation of the classic spatial hashing method (Secs. IIT and
V).

III. RESULTS AND DISCUSSION

Performance. In standard spatial hashing methods, the
computing time is composed of two parts: the time 7eqicval
used for retrieving information from cells, and the time T geeq
used for detecting contacts between the objects in U ;; and
other objects in neighboring cells {neighbor(U;;,)}. In
MGCD, for each grid G™, the optimized NBS implementa-
tion is adopted. Rather than checking with all the cells, we
only check those nonempty cells. For a sparse system, this
strategy can achieve significant performance improvement
and save a lot of memory [6]. There are at most |[Sh..|
nonempty cells in grid G, and for each native object O;

€ Spiives it will be checked against Sy, X Ch/LP aver-

agely, so the computing time on grid G” can be denoted by
"= T:Ztrieva T:inetect - 0(|Slr111ative|) + 0(|Snat1ve| X |S

X C3 /L) = 0(|Starget| X Phative) (8)

where p;. ... is the density of native objects of grid G”. The
computing time in whole is

T= ZT'" 20(|s

nati ) < 2 O(N X p?:alive)
= O(N) X 2 pive= O(N). (9)

The time complexity 7 is independent of the number of grids
and the number of cells.

The intrinsic multigrid property of MGCD leads to its
efficiency. Contacts with different ranges are calculated on
grids with different coarsenesses, so we don’t have to main-
tain the long range contact information in the fine scale.
Since different grids are independent of each other, we do
not need to allocate memory for all grids at the same time. At
any time, only one grid needs to be maintained in the
memory. The memory consumption of MGCD is indepen-
dent of the number of grid layers.

The tree-based contact detection methods have a
O(N In N) time complexity. It is meaningless to compare the
O(N) MGCD method with O(NIn N) methods. Here we
compare MGCD with two O[N ><( ”) ] methods, NBS [6],
and the multilevel boxing method [7] When the object sizes
conform to bimodal distribution, following Sec. I, let W), and
W, be the sizes of big objects and small objects, respectively.

To solve this problem, we need two grids, G’ and G*, the cell
sizes of which satisfy C,=W, and C,=W,. From Egs. (2) and

(3), |Starget =N and |Sp,.el=N,- The density of big objects
is pp= N,, 7o and the density of small objects is p,= NY‘Z/,)

From Egq. (8), solvmg the contacts between big objects in the

coarse grid costs Nb_LD solving the contacts between big
WD
objects and small objects in the coarse grid costs Nb—LD -,

and solving the contacts between small objects in the fine
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FIG. 3. Performance comparison between MGCD (+,X), the
multilevel boxing method ((J,¢), and NBS method (<, I>) for
different object composition. The computing time is normalized by
the number of objects. % is 10. The number of big objects is 10%.
Density is the sum of p;, and p, (p,+p,). The host machine has one
Pentium 42.8 G processor and 1 GB RAM. Due to excessive
memory consuming, when the density is 0.1 and number of small
objects is 107, the data for the multilevel boxing method are not
available.

. N X WP . . .
grid costs Ny— 5. The total computing time is the sum of

these three parts and to give a final time:

T=NXPb+NYXpS' (10)

Figure 3 illustrates the performance comparison for dif-
. - W .

ferent object composition with W equal to 10. In this case,
MGCD includes two grids. The classic linked-list implemen-
tation [8] is adopted for coarse grid, and the NBS implemen-
tation is adopted for fine grid. MGCD is much faster than the
multilevel boxing method when N, has the same scale with
N,. Both MGCD and NBS consume much less memory than
the multilevel boxing method. MGCD and NBS have similar
performance when p, is approximate to zero, but when p; is
not neglectable, MGCD outperforms NBS significantly. The
computing time and memory consumption of MGCD is pro-
portional to the number of objects rather than the number of
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FIG. 4. The relationship between different size ratios and com-
puting time. The computing time is normalized by the number of
objects. N, is 10%, W,, is 10 cm, and the density (p) is 0.1. W, varies
from 1 to 10 cm, N, (labeled in the figure) varies from 10* to 107,
but N, X W? is kept fixed. The host machine is the same as the one
for Fig. 3.

cells. For a sparse system, an algorithm being related to
number of objects can save a lot of memory than being re-
lated to number of cells [Fig. 3(b)]. The relationship between
the normalized computing time and different size ratios is
depicted in Fig. 4. The performance of MGCD is insensitive
to the size ratio and object size distribution.

MGCD can be parallelized effectively. Different grids can
be calculated on different computers independently. The par-
allelization of contact detection in each grid can be achieved
by domain decomposition method. For each grid, besides the
NBS implementation, we can also only index those non-
empty cells by building a hash mapping between cell coor-
dinates and cell physical storage place. Generally, NBS is
more efficient while the hash mapping based implementation
is more straightforward.

IV. APPLICATIONS

The packing of particles has been studied for several
years on account of its interesting properties, its technologi-
cal importance and its potential applications. The research on
the packing of particles can be applied to many fields, such
as the microstructures of liquids [10], granular materials
[11], amorphous materials [12,13], and powder metallurgy
(PM) [14]. According to the packing method, the packing of
particles can be classified into two classes: ordered packing
and random packing. For the ordered packing, it is often
easier to achieve larger packing density, while, random pack-
ing is more widely applied in nature and industry.

Random packing has been studied experimentally [15,16]
and theoretically [17,18]. Based on DEM, scientists have
studied the packing of monosize particles [19,20]. In the
simulation of granular matter, the most time-consuming pro-
cess is contact detection. We have integrated MGCD with
DEM, and studied the influence of particle composition on
packing density in three dimensions. Here, two packing
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TABLE I. Parameters for the simulation of particle packing.

Parameter Value Parameter Value
k, 107 N/m ks 10’ N/m
" 0 YV 0.7
p 7800 kg/m? g 9.8 m/s?

schemes are compared: monosize packing and binary pack-
ing with size ratio equal to 10.

A. The model

According to Newton’s second law of motion, every par-
ticle in the system undergoes two types of motion, namely,
translational motion and rotational motion. In our model, the
forces considered are the contact force in normal direction
F,;, the damping force in normal direction F, ;;, the con-
tact force in tangential direction F,,;; and gravity. All these
forces cause translational motion. Since F,;; is the only
force that does not pass directly through the center of mass,
the only cause of rotational motion is F,;;. The motion of
particles can be described by

dv;
I’mE :2 (Fcn,ij+Fdn,ij+Fct,ij) +mg, (11)
j
do
[Z2-S (R, XF,, i) (12)
dr 7 ,

where m;, v;, [;, and w; are the mass, translational velocity,
moment of inertia, and angular velocity of particle 7, respec-
tively. R; is a vector running from the center of particle to the
contact point with its magnitude equal to particle radius R;. A
simple linear elastic-damping model is adopted:

Fcn,ij= kngnﬁij? (13)

where &, is the displacement in normal direction and fi;; is
the unit vector point from the center of particle j to the center
of particle i.

The damping in normal direction Fy, ;; is

Fdn,ij == ’yn|Fcn,ij|Sgn(.§n) b (14)

where v, is the damping constant in normal direction. The
hysteretic damping model applied here is similar to the
model proposed by [21].

Elastic model in tangential direction is adopted from [1],
in which a tangential “virtual” spring is put at the contact
point when two particles start to touch each other:

ch,ij == min[|ks§s M(Fcn,ij + Fdn,ij)’] X Sgn(gs)’ (15)

where k; is the tangential stiffness, and & is the total shear
displacement of the tangential spring that took place since
the time f, when the contact was first established, i.e.,

)

&= f 1 v (t)dt. (16)

0
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FIG. 5. (a) Snapshot showing the formation of a binary packing
of 200 big particles (R,=6.5 mm) and 300 small particles (R,
=3.9 mm). (b) Schematic view of calculation cuboid in 2D. Here,
(particles N calculation cuboid) is the shaded area, and the area of
calculation cuboid is L X h [Eq. (17)].

B. Simulation condition

The simulation is composed of two stages, namely, the
initial stage and the settling stage. The initial position of
particles requires special handling. If they were located ran-
domly, overlaps between some of them would be inevitable.
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FIG. 6. The relationship between particle composition and pack-
ing density. The size ratio % is 10. The number of big particles N,
is fixed at 2000.

That would induce instability right after the packing simula-
tion starts. To avoid such initial overlaps, a “growing pro-
cess” was introduced in the initial stage. At the beginning of
the initial stage, particles are initialized with radius equal to
zero and target radius conforming to a prescribed distribu-
tion. These particles are positioned within a rectangular box
randomly and the acceleration due to gravity g is set to be
zero. Then the particles begin to grow and touch with each
other. The contacts are detected and processed. The growing
process ends when particle radii reach their target radii. Then
the simulation switches to the settling stage. At the settling
stage, gravity is switched on, particles move according to
gravity and interparticle forces. They will collide with neigh-
boring particles and bounce back and forth. The system en-
ergy will dissipate by damping and friction and particles will
reach their stable position eventually. In this application, the
simulation time step Ar is 10 us, the initial stage lasts 2
X 10* steps (0.2 s), and the whole simulation lasts 3 X 10°
steps (3 s). Other simulation parameters are listed in Table 1.

The radius of big particles (R,) and small particles (R,)
are 5 cm and 5 mm, respectively. The number of big par-
ticles (V,) is 2000, and the number of small particles (N,)
varies from 2 X 10* to 10°. Particles are put in a rectangular
box, and the volume of box is twice as the total volume of all

WoW,

object size

FIG. 7. Uniform distribution.
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particles. The vertical dimension of the box is twice as long
as the two horizontal dimensions (Fig. 5). Periodic boundary
conditions are applied to four vertical walls. No top bound-
ary condition is applied and the bottom wall has the same
physical property as particles. When the simulation is fin-
ished, since the top profile of these particles may not be flat,
a virtual plane is placed 30 cm below the top particle. This
virtual plane, the bottom wall, along with four vertical walls
compose a calculation cuboid [Fig. 5(b)]. Packing density is
defined by

volume of particles N calculation cuboid

packing density = - -
volume of calculation cuboid

(17)

Figure 6 illustrates the relationship between different compo-
sition and packing density. By using 10* monosize particles,
we get the packing density of 0.636. It agrees well with the
classic experimental value of 0.637 obtained by Scott and
Kilgour [15], which pours ball bearings into a large con-
tainer, vibrates the system to achieve maximum densifica-
tion, and extrapolates the results to eliminate finite-size ef-

fects. And when %Z is 300, the maximal packing density
0.824 is achieved. In this application, we can make polydis-
perse packing get larger density than monosize packing with

appropriate particle composition.

V. CONCLUSIONS

This paper has presented a multigrid method for contact
detection. It has O(N) time complexity and memory con-
sumption. The performance of MGCD is insensitive to object
size distribution. We have compared MGCD with other con-
tact detection methods. MGCD has the same performance as
NBS method when the system contains merely monosize ob-
jects, but MGCD outperforms other methods when the object
sizes are diverse. MGCD can be applied to general contact
detection problems as long as the objects in the physical
system can be contained by bounding boxes. We have ap-
plied MGCD to a granular simulation problem, and simu-
lated the dynamics of 10° metal particles. The packing den-
sity for monosize particles is 0.636. We have also obtained
the binary packing density function for a big object size ra-
tio. If the size ratio is fixed at 10, when the number of small
particles is 300 times as large as the number of big particles,
the maximal packing density 0.824 is achieved.
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APPENDIX: THE COMPUTING TIME FOR ORDINARY
METHODS WHEN PARTICLE SIZES CONFORM
TO UNIFORM DISTRIBUTION

When object sizes conform to a uniform distribution (Fig.

7), the number of particles in the range [x,x+dx] is W;,IXW dx.

According to Sec. I, the time complexity for discretizing the

information of these objects to the fine grid is (W;XW dx)

X (ﬁ)D, so the computing time in whole is
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Yo N x \P
computation time = f ——dx| X | —
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